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Abstract

A simple computational scheme which utilizes computational neural networks was developed and used for estimating physical
properties of hydrofiuorocarbons. Testing of the computational method has demonstrated that thermodynamic and physical
characteristics (boiling point, density, critical temperature, heat of evaporation) could be predicted with an average error of

3-5%.
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1. Introduction

The impending ban on the production of common
Freons (chlorofluorocarbons, CFCs) has generated a
considerable boost of research activity in fluoro-organic
chemistry, especially in the field of synthetic chemistry
of small fluoro-organic molecules. The main priorities
of this research, however, have focused on the synthesis
of hydrofluorocarbons (HFCs) with given properties to
match the properties of the discontinued CFCs as closely
as possible.

Here we present a computational scheme based on
neural network computing which is capable of estimating
properties of HFCs based on their structures. Using
commercially available and inexpensive software, it al-
lows the focus of synthetic efforts on the most promising
compounds instead of wide screening of all possible
candidates. We utilized a user-friendly neural-network
simulator installed on an IBM personal computer, which
makes these computations intelligible and reproducible
even for a non-specialist in computational chemistry.

2. Results and discussion

Application of computational neural networks in
solving chemical problems has been receiving growing
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attention from computational chemists for use as a
powerful tool of approximation, computation and pat-
tern recognition [1-3]. Such applications have been
particularly successful in the area of prediction of
physical properties of compounds based on their struc-
tures [4-6].

In our previous paper we demonstrated one of the
possible schemes of neural network computing by pre-
dicting the properties of hydrocarbons [6]. The main
idea was to encode structural parameters by using a
set of topological invariants, and then to use these
invariants as input for neural-network computing [6].
Another possible approach entails direct utilization of
chemijcal structure features of the compound as a source
of the structural information for the neural networks.

Hydrofluoroethanes and -propanes were chosen as
basic compounds since they are the most likely sub-
stitutes for Freons R-11 and R-114 which are currently
being sought by different organizations, as they are less
likely to destroy the ozone layer. The final choices will
be made based on the match of the physical parameters
of the CFC alternatives with those of the parent com-
pounds. Among the most important parameters are
boiling point, heat of evaporation, density, critical tem-
perature, atmospheric lifetime, and ozone-depletion
potential. Using our technique we have tried to predict
some of the above properties. Different sources of
physical data including reference materials and primary
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publications as well as computer databases were used
for training in this study [7-13}. In the cases of ambiguous
data, preference was given to the most recent publi-
cations. A user-friendly commercial neural-network sim-
ulator [14] was used in this study, which makes these
computations intelligible and reproducible even for the
non-specialist in computational chemistry (in this study
we have used backpropagation-type neural networks
included in this program package).

Since HFCs consist of only carbon, fluorine and
hydrogen, they are ideal objects for a technique which
generates numeric input vectors directly from structural
formulas. This method is also capable of some gen-
eralization thus allowing us to utilize one neural network
for all compounds: hydrofluoroethanes, -propanes and
-butanes.

The neural network consists of eight input neurons,
one hidden layer and one output neuron (see Fig. 1).
For simplicity, bias was omitted in the figure. The
quantity of neurons in a hidden layer vary (2-6) and
were determined during a standard optimization pro-
cedure using leave-k-out and other methods [14]. As
an input we have used a quantity of fluorine and
hydrogen atoms at each carbon unit of the alkane
framework. An example of a sample-input preparation
is presented in Fig. 1. Since our scheme cannot dis-
tinguish structures of diastereoisomers, their physical
data were averaged. Different numeration techniques
were used for propanes and ethanes since their numeric
vectors must contain six and four positions, respectively.
In these cases we added 00 or 00 00 vectors to make
them compatible with the numeric vectors for butanes.
These zero values indicated to the neural network that
the corresponding methylene fragments were missing.
A full data set including formulas, experimental and
predicted properties of hydrofluoroethanes and hydro-
fluoropropanes is presented in Table 1.

Sampie Generation of the input File from 2-fluorcbutane.

Structural codes:

1: Number of hydrogens at position 1
2: Number of fluorines at pasition 1
3: Number of hydrogens at position 2
4: Number of fluorines at position 2
5: Number of hydrogens at position 3
6: Number of fluorines at position 3
7: Number of hydrogens at position 4
8: Number of fluorines at position 4

Sample Numeric Input Vector:
30112030

Fig. 1. Sample generation of the input file, structural codes and
neural-network configuration.

Table 1
Physical properties of hydrofluorocarbons

Formula Bp. T. D2 AH o™
() °C) (g ecm™)  (kJ mole™")

CH;CH,F —-374 102.2 0.709® 18.40°¢
CH,CHF, —24.7 1134 0.901 18.92°¢
CH,FCH,F 10.5 196.0 0.979° 20.37+*
CH,CF; —47.6 73.2 0.962 14.19°¢
CH,LFCF,H 5.0 149.1 1.095# 20.81*
CH,FCF, —-26.1 100.0 1.216° 20.122
CHF,CHF, —23.0 99.1 0.972° 20.122
CHF,CF,4 —48.6 68.8 1.200* 18.69*
CF;CF, —78.2 19.8 - 16.16
CFH,CH,CH, -2.5 1454 0.719® 2420
CH,CHFCH, —94 139.1¢ 0.860 ° 23.60
CF,HCH,CH, 8.0 156.9 0.892# 25.27*
CFH,CHFCH; 15.0 167.2° 0912* 24.87*
CFH,CH,CFH, 41.3 191.0* 1.006 25.27*
CH,CF,CH; -04 149.0 * 0.920 2444 °*
CF;CH,CH,3 —13.0 1189 0.959* 26.59*
CF,HCHFCH, 18.7 168.2* 1.054 * 26.30*
CF,HCH,CFH, 45.0 191.7* 1.131* 26.59*
CFH,CHFCH,F 70.0 2065 ¢ 1.202* 26.30*
CH,CF,CH,F 21.7% 171.8% 1.000 # 25.98*
CF,CFHCH; -1.0 138.8* 1.130* 26.81%
CF,CH,CFH, 29.4 17552 1.213# 27.05*
CF,HCHFCFH, 4.5 146.6 * 1.146 * 26.82*
CHF,CH,CHF, 27.0 173.1# 1.207* 27.05*
CHF,CF.,CH; —-0.8 140.5* 1.131* 24.86
CH,FCF,CFH, 453 * 191.0°* 1.134* 26.50*
CF,CF,CH, —18.3 108.5 1.176 23.60
CF;CHFCH,F 20.0 163.0* 1.300* 26.53*
CF,CH,CHF, 15.3 157.5 1.324 28.00
CF,HCHFCHF, 18.6* 161.2¢ 1.254 ¢ 26.53*
CF,HCF,CH,F 26.0 178.4 1.336 29.20
CF,CF,CFH, —1.4 130.1 1.290® 25.60
CF,CFHCF,H 6.5 141.1 1.390 26.83
CF,HCF,CF,H 12.6 155.2 1.480° 26.60
CF,CH,CF; -1.1 130.6 1.371 25.60
CF,CF,CF,H —16.3 106.3 1.375° 23.69
CF;CHFCF, —18.3 102.8 1.409 ® 22.30
CF,CF,CF, —39.0 71.0 1.337° 20.50

# Neural Network Estimations.

® Extrapolations from different temperatures.
<At 25 °C.

2.1. Boiling point

There are several reports on predicting boiling points
of CFCs and HFCs. The most recent one is based on
data for 256 halogenated alkanes, mostly propanes,
ethanes and methanes, and includes equations found
by regression analysis which correlate boiling point with
a set of topological indices and stoichiometric data [15].
However, the best accuracy was achieved by a modified
boiling-point numbers scheme [16], which was initially
developed to establish relationships between stoichi-
ometry and boiling point. The modification included
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some additional rules which were established in the
series of halogenated ethanes on the basis of structural
fragment analysis [16].

Our neural network performance data are presented
in Table 1 and in Fig. 2. These results were achieved
by a neural network having six neurons in a hidden
layer (hyperbolic tangent) after 128 032 epochs requiring
27 min of real-time computations on an IBM PC XP-
486 (50 MHz) [14]. The average error of the test set
is 10.8 °C, which is noticeably worse than what has
been reached by regressional analysis (5-6 °C) [15,16].
The main reason for this is utilization of the generalized
input file (ethane, propane, butane derivatives all to-
gether), and the well-known dependence of the boiling
points of HFCs on dipolar interactions [16]. The last
parameter is the most important one since we have
already shown that a similar approach for predicting
boiling points of hydrocarbons gives an average error
as low as 2-3 °C [6]. It appears that the neural network
experienced difficulties in recognition of these di-
pole-dipole interactions (not directly represented in
our scheme). The last problem can be easily recognized
by observation of the S-shaped curve on the plot of
the predicted values versus observed values, where the
lower boiling points (weak or no dipole interactions)
are estimated higher, and the higher boiling points
(strong dipole interactions) are predicted lower. The
overall performance was sufficiently better (average
error 4.7 °C) when we excluded the extremes and used
a limited temperature range of —40 to +40 °C.

2.2. Critical temperature

Our initial attempts of critical-temperature estimation
for HFCs showed that although our scheme developed
for boiling points was also applicable, the average error
could not be reduced below 10 °C. The main reasons
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Fig. 2. Experimental versus neural-network predicted values of HFC
boiling points for the testing (cross-validation) set.

for this are that an insufficient volume of experimental
data was available for us and the complex struc-
ture~property relationships (see discussion on boiling
point above). Other developed methods, for example,
employing the correlation between topological indices
and critical parameters, have also shown significantly
less accuracy for critical temperature. Much better
results (average accuracy 4.5% or 5.9 °C) were achieved
using experimental boiling points of HFCs as an ad-
ditional input. In this case the neural network utilizes
known relationships between boiling point and critical
temperature for the error reduction. Although boiling
points are not known for all HFCs, this method works
best for approximating the critical temperature. An
optimized neural network (leave-k-out and other meth-
ods) contains one hidden layer (four neurons, sigmoid
function). The performance results are shown in Fig.
3 and Table 1. They were achieved after 12 min of
computation on an 1IBM PC XP-486 (50 MHz) over
52170 epochs [14].

2.3. Heat of vaporization

The heat of vaporization (at the normal boiling point
or 25 °C and equilibrium pressure) represents an im-
portant parameter for HFC application, especially in
refrigeration and air-conditioning systems. Since this
parameter is much less sensitive to the specific features
of the molecule, the results are usually good, even in
the case of HFCs. We were able to achieve accuracy
as good as 1.1 kJ mole ™! average error which is good
enough for most applications. The optimized architec-
ture contained one hidden layer (four neurons, sigmoid
function), and the training cycle was completed after
44 467 epochs. The results are presented in Fig. 4 and
Table 1.
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Fig. 3. Experimental versus neural-network predicted values of HFC

critical temperatures for the testing (cross-validation) set.
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Fig. 4. Experimental versus neural-network predicted values of HFC
heats of vaporization for the testing (cross-validation) set.
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Fig. 5. Experimental versus neural-network predicted values of HFC
liquid densities for the testing (cross-validation) set.

2.4. Liquid density

Density is another important parameter for HFC
applications, and it appears to be the best parameter
for the predictions based on neural-network compu-
tations. As we have already shown, the density of alkanes
could be predicted from their structures with an average
accuracy better than 1% [6]. The density of HFCs can
be predicted with lower, but still very good, accuracy
(2.7% or 0.03 g cm™?), and is satisfactory for most
applications. These results were achieved with one
hidden layer containing two neurons (sigmoid function)
after 30 021 epochs. The graphic plot of the results is
presented in Fig. 5 and Table 1.

3. Conclusions

We have shown that neural-network computing can
be effectively used for estimation of unknown physical

and thermodynamic properties of HFCs based on their
chemical structures. This simple computational scheme
has an average accuracy of 3-5% and does not require
any prior knowledge of property-structure relationships
for this class of compounds. In addition, all necessary
computations can be performed on a personal computer
within 1 h.
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